Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398586

RESUMO

Atraphaxis pyrifolia is a native species of Central Asia, known for curing several disorders. The species has little knowledges about its chemical composition and any information about its morphological characteristics despite its importance in traditional Asian medicine. This is one of the first approaches to the phytochemical and morphological characterization of this species. Micro-morphology was performed on the stem, and leaf parts of this plant to profile the morpho-anatomical characters using brightfield, fluorescence, polarized and scanning electron microscopy. Leaves were extracted with hexane and methanol. The hexane extract was analyzed using GC-MS analysis revealing the major presence of γ-sitosterol and nonacosane. The methanolic extract was submitted to Vacuum Liquid Chromatography and Sephadex LH-20. HPTLC, HR-ESI-MS and NMR techniques were used to identify the main compounds. Four glycosylated flavonoids were isolated: 8-O-acetyl-7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 1), and 7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 3), and two other compounds reported for the first time in the literature (Compounds 2 and 4). The findings presented herein furnish pertinent information essential for the identification and authentication of this medicinal plant. Such insights are invaluable for facilitating robust quality control measures and serve as a foundational framework for subsequent endeavours in metabolic, pharmacological, and taxonomical analyses.


Assuntos
Hexanos , Extratos Vegetais , Extratos Vegetais/química , Cazaquistão , Compostos Fitoquímicos/farmacologia , Metanol
2.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398660

RESUMO

Atraphaxis is a genus of flowering plants in the family Polygonaceae, with approximately 60 species. Species of Atraphaxis are much-branched woody plants, forming shrubs or shrubby tufts, primarily inhabiting arid zones across the temperate steppe and desert regions of Central Asia, America, and Australia. Atraphaxis species have been used by diverse groups of people all over the world for the treatment of various diseases. However, their biologically active compounds with therapeutic properties have not been investigated well. Studying the biologically active components of Atraphaxis laetevirens, Atraphaxis frutescens, Atraphaxis spinosa L., and Atraphaxis pyrifolia is crucial for several reasons. Firstly, it can unveil the therapeutic potential of these plants, aiding in the development of novel medicines or natural remedies for various health conditions. Understanding their bioactive compounds enables scientists to explore their pharmacological properties, potentially leading to the discovery of new drugs or treatments. Additionally, investigating these components contributes to preserving traditional knowledge and validating the historical uses of these plants in ethnomedicine, thus supporting their conservation and sustainable utilization. These herbs have been used as an anti-inflammatory and hypertension remedies since the dawn of time. Moreover, they have been used to treat a variety of gastrointestinal disorders and problems related to skin in traditional Kazakh medicine. Hence, the genus Atraphaxis can be considered as a potential medicinal plant source that is very rich in biologically active compounds that may exhibit great pharmacological properties, such as antioxidant, antibacterial, antiulcer, hypoglycemic, wound healing, neuroprotective, antidiabetic, and so on. This study aims to provide a collection of publications on the species of Atraphaxis, along with a critical review of the literature data. This review will constitute support for further investigations on the pharmacological activity of these medicinal plant species.


Assuntos
Plantas Medicinais , Polygonaceae , Humanos , Etnofarmacologia , Medicina Tradicional , Fitoterapia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Extratos Vegetais/química
3.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257301

RESUMO

Since ancient times, various scientists and doctors have utilized different herbs to heal diseases. Due to the rise in drug resistance and the negative effects of chemosynthetic drugs, researchers and the general public around the world have become more interested in medicinal herbs and plant metabolites/extracts. This is due to its non-toxicity and its several health benefits when used to treat diseases in clinical and medical settings. Ocimum basilicum is one such plant, possessing a wide range of bioactive phytochemicals including alkaloids, phenolics, flavonoids, tannins, saponins, reducing sugars, cardiac glycosides, steroids and glycosides, as well as complex pharmacological activities, including anti-inflammatory, antifungal, antibacterial, antioxidant, wound healing and antiviral properties. The results of many studies on Ocimum basilicum plant extracts are collected and presented in this review. The plant extracts have excellent potential to be used as medicinal raw materials, and exhibit an extensive variety of therapeutic capacities, including antibacterial, antioxidant, wound healing, anti-inflammatory, antifungal, and antiviral properties.


Assuntos
Anti-Infecciosos , Lamiaceae , Ocimum basilicum , Antifúngicos , Antioxidantes/farmacologia , Anti-Infecciosos/farmacologia , Antibacterianos , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Antivirais
4.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005278

RESUMO

Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.


Assuntos
Anti-Infecciosos , Bacillus , Enterobacter aerogenes , Compostos Orgânicos Voláteis , Antibacterianos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Antioxidantes/farmacologia , Ácido Butírico/farmacologia , Acetoína/análise , Filogenia , Anti-Infecciosos/farmacologia , Escherichia coli , Bacillus cereus , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
J Biol Eng ; 17(1): 64, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845737

RESUMO

Hydrogels are three-dimensional structures with specific features that render them useful for biomedical applications, such as tissue engineering scaffolds, drug delivery systems, and wound dressings. In recent years, there has been a significant increase in the search for improved mechanical properties of hydrogels derived from natural products to extend their applications in various fields, and there are different methods to obtain strengthened hydrogels. Cationic guar gum has physicochemical properties that allow it to interact with other polymers and generate hydrogels. This study aimed to develop an ultra-stretchable and self-healing hydrogel, evaluating the influence of adding PolyOX [poly(ethylene oxide)] on the mechanical properties and the interaction with cationic guar gum for potential tissue engineering applications. We found that variations in PolyOX concentrations and pH changes influenced the mechanical properties of cationic guar gum hydrogels. After optimization experiments, we obtained a novel hydrogel, which was semi-crystalline, highly stretchable, and with an extensibility area of approximately 400 cm2, representing a 33-fold increase compared to the hydrogel before being extended. Moreover, the hydrogel presented a recovery of 96.8% after the self-healing process and a viscosity of 153,347 ± 4,662 cP. Therefore, this novel hydrogel exhibited optimal mechanical and chemical properties and could be suitable for a broad range of applications in different fields, such as tissue engineering, drug delivery, or food storage.

6.
Pharmaceuticals (Basel) ; 16(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631007

RESUMO

Since ancient times, many scientists and doctors have used various herbs to treat diseases. Conventional drugs often have side effects, and pathogens are becoming resistant to these types of drugs. In such circumstances, the study of traditional medicinal plants is an effective and logical strategy for finding new herbal medicines. One such herb is Plantago major, a perennial plant in the Plantaginaceae family that is found throughout the world. The Plantago major plant has been used as a medicine for the treatment of various diseases. Studies have shown that plant extracts of Plantago major exhibit antimicrobial, antiviral, and anti-inflammatory effects, and have wound-healing properties. This review collects and presents the results of various studies of Plantago major plant extracts with antimicrobial, antiviral, antifungal, anti-inflammatory, and wound-healing properties, which demonstrate a wide range of therapeutic possibilities of Plantago major plant extracts and have a huge potential for use as a medicinal raw material.

7.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298930

RESUMO

The genus Anabasis is a member of the family Amaranthaceae (former name: Chenopodiaceae) and includes approximately 102 genera and 1400 species. The genus Anabasis is one of the most significant families in salt marshes, semi-deserts, and other harsh environments. They are also renowned for their abundance in bioactive compounds, including sesquiterpenes, diterpenes, triterpenes, saponins, phenolic acids, flavonoids, and betalain pigments. Since ancient times, these plants have been used to treat various diseases of the gastrointestinal tract, diabetes, hypertension, and cardiovascular diseases and are used as an antirheumatic and diuretic. At the same time, the genus Anabasis is very rich in biologically active secondary metabolites that exhibit great pharmacological properties such as antioxidant, antibacterial, antiangiogenic, antiulcer, hypoglycemic, hepatoprotective, antidiabetic, etc. All of the listed pharmacological activities have been studied in practice by scientists from different countries and are presented in this review article to familiarize the entire scientific community with the results of these studies, as well as to explore the possibilities of using four plant species of the genus Anabasis as medicinal raw materials and developing medicines based on them.


Assuntos
Amaranthaceae , Chenopodiaceae , Humanos , Chenopodiaceae/microbiologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Etnofarmacologia
8.
Molecules ; 28(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049972

RESUMO

Numerous natural habitats, such as soil, air, fermented foods, and human stomachs, are home to different Bacillus strains. Some Bacillus strains have a distinctive predominance and are widely recognized among other microbial communities, as a result of their varied habitation and physiologically active metabolites. The present study collected vegetable products (potato, carrot, and tomato) from local markets in Almaty, Kazakhstan. The bacterial isolates were identified using biochemical and phylogenetic analyses after culturing. Our phylogenetic analysis revealed three Gram-positive bacterial isolates BSS11, BSS17, and BSS19 showing 99% nucleotide sequence similarities with Bacillus subtilis O-3, Bacillus subtilis Md1-42, and Bacillus subtilis Khozestan2. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Candida albicans, Candida krusei, Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae, Salmonella enteritidis, Klebsiella aerogenes, Enterococcus hirae, Escherichia coli, Serratia marcescens, and Proteus vulgaris. This study found that the species that were identified have the ability to produce antibiotic chemicals. Additionally, the GC-MS analysis of three bacterial extracts revealed the presence of many antibiotic substances including phenol, benzoic acid, 1,2-benzenedicarboxylic acid and bis(2-methylpropyl), methoxyphenyl-oxime, and benzaldehyde. This work sheds light on the potential of Bacillus to be employed as an antimicrobial agent to target different multidrug-resistant bacterial strains. The results indicate that market vegetables may be a useful source of strains displaying a range of advantageous characteristics that can be used in the creation of biological antibiotics.


Assuntos
Anti-Infecciosos , Bacillus , Humanos , Antibacterianos/farmacologia , Bacillus/genética , Verduras , Filogenia , Bacillus subtilis , Escherichia coli , Testes de Sensibilidade Microbiana
9.
Z Naturforsch C J Biosci ; 78(1-2): 9-25, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36069757

RESUMO

Santalum genus belongs to the family of Santalaceae, widespread in India, Australia, Hawaii, Sri Lanka, and Indonesia, and valued as traditional medicine, rituals and modern bioactivities. Sandalwood is reported to possess a plethora of bioactive compounds such as essential oil and its components (α-santalol and ß-santalol), phenolic compounds and fatty acids. These bioactives play important role in contributing towards biological activities and health-promoting effects in humans. Pre-clinical and clinical studies have shown the role of sandalwood extract as antioxidant, anti-inflammatory, antibacterial, antifungal, antiviral, neuroleptic, antihyperglycemic, antihyperlipidemic, and anticancer activities. Safety studies on sandalwood essential oil (EO) and its extracts have proven them as a safe ingredient to be utilized in health promotion. Phytoconstituents, bioactivities and traditional uses established sandalwood as one of the innovative materials for application in the pharma, food, and biomedical industry.


Assuntos
Óleos Voláteis , Santalum , Humanos , Santalum/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia
10.
Molecules ; 27(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557956

RESUMO

Rapeseed (Brassica napus L.) is a herbaceous annual plant of the Cruciferous family, the Cabbage genus. This oilseed crop is widely used in many areas of industry and agriculture. High-quality oil obtained from rapeseed can be found in many industrial food products. To date, extracts with a high content of biologically active substances are obtained from rapeseed using modern extraction methods. Brassica napus L. seeds contain polyunsaturated and monounsaturated fatty acids, carotenoids, phytosterols, flavonoids, vitamins, glucosinolates and microelements. The data in this review show that rapeseed biocompounds have therapeutic effects in the treatment of various types of diseases. Some studies indicate that rapeseed can be used as an anti-inflammatory, antioxidant, antiviral, hypoglycemic and anticancer agent. In the pharmaceutical industry, using rapeseed as an active ingredient may help to develop new forms drugs with wide range of therapeutic effects. This review focuses on aspects of the extraction of biocompounds from rapeseed and the study of its pharmacological properties.


Assuntos
Brassica napus , Brassica rapa , Brassica , Ácidos Graxos Monoinsaturados , Sementes
11.
Int J Microbiol ; 2022: 3181270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677190

RESUMO

The use of medicinal plants has increased significantly in recent years. More than 80% of the world's population uses medicinal plants to treat themselves. Many antibacterial and anti-inflammatory synthetic drugs are available in medical practice. However, recent tendency of increasing capability of resistance of bacteria to usage of antibacterial drugs of different groups is taking place. Considering the wide range of pharmacological and antimicrobial activity of safflower flower extracts and available vitamins in their composition, it was decided to create a preparation based on the CO2 extract of safflower (Carthamus tinctorius L.) in the form of an ophthalmic emulsion. The aim of this research is to study the composition and antimicrobial activity of the extract and ophthalmic emulsion drops against test strains of microorganisms. The subject of this study is the ophthalmic emulsions from flowers of Kazakhstan species of "Akmai" safflower, collected in the flowering stage in southern Kazakhstan in August 2021. The component composition was determined using gas chromatography with the Agilent 7890A/5975C mass spectrometry technique. A study of the antimicrobial activity of the ophthalmic emulsion drop extracts was performed with two strains of Gram-positive bacteria, one strain of Gram-negative bacteria, and one culture of fungi. The following biologically active substances were determined from the GC-MS results: tridecane 94%, tricosane 93%, hexacosane 93%, dodecanoic acid 92%, pentacosane 91%, and linoleic acid 63.7%. The investigated emulsion-type eye drop shows bactericidal activity against S. aureus ATCC 6538-P, where the zone of growth suppression under the ophthalmic emulsion action corresponded to 9.0 ± 0.0 mm. The tested ophthalmic emulsion drops show the presumed biological activity against conditionally pathogenic bacteria. The results of chromatographic analysis and antimicrobial activity of the tested samples indicate the prospects for their further study for use as anti-infectious (anti-inflammatory) agents in medicine.

12.
Front Mol Biosci ; 8: 649395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540888

RESUMO

Resveratrol is a polyphenolic stilbene derivative widely present in grapes and red wine. Broadly known for its antioxidant effects, numerous studies have also indicated that it exerts anti-inflammatory and antiaging abilities and a great potential in cancer therapy. Regrettably, the oral administration of resveratrol has pharmacokinetic and physicochemical limitations such as hampering its effects so that effective administration methods are demanding to ensure its efficiency. Thus, the present review explores the published data on the application of resveratrol nanoformulations in cancer therapy, with the use of different types of nanodelivery systems. Mechanisms of action with a potential use in cancer therapy, negative effects, and the influence of resveratrol nanoformulations in different types of cancer are also highlighted. Finally, the toxicological features of nanoresveratrol are also discussed.

13.
Ann Agric Environ Med ; 25(1): 87-89, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29575869

RESUMO

INTRODUCTION: Carthamus tinctorius L. is commonly known as Safflower. C. tinctorius extracts and oil are important in drug development with numerous pharmacological activities in the world. This plant is cultivated mainly for its seed which is used as edible oil. For a long time, C. tinctorius has been used in traditional medicines as a purgative, analgesic, antipyretic and an antidote to poisoning. It is a useful plant in painful menstrual problems, post-partum haemorrhage and osteoporosis. OBJECTIVE: The subject of this study is the seeds of Kazakhstan species of 'Akmai' safflower, collected in the flowering stage in Southern Kazakhstan. Volatile oil was carry out to study the component composition of Kazakhstan 'AkMai' safflower flowers. MATERIALS AND METHOD: Pale yellow oily extracts were obtain by varying the process parameters. The volatile oil obtained by hydrodistillation of the petals Carthamus tinctorius L. was analyzed by gas chromatography/mass spectrometry (GC/MS). The yield of the oil was 0.175 % (v/w). 20 compounds representing 99.81% of the oil were characterized. The volatile oil was found to be rich in undecanoic acid, octane, 2-nonen -1-ol, hexadecanal, dodecanal, dec-2-en-1-ol, nonanoic acid, tetradecanoic acid, 2 pentadecanone, 6,10,14-trimethyl, 1,2-benzenedicarboxylic acid, isobutyl-beta-phenylpropionate, 1.3-cyclohexadiene, myrtenoic acid, octadecanoic acid, heneicosanoic acid, 2(3H)-furanone, 4,4-dipropylheptane, hexcosane,1-eicosanol, as well as heptocosane. RESULTS: Volatile oil from the flowers of the Kazakhstan safflower species 'Ak-Mai' were investigated by GC/MS which allowed the detection of 20 compounds. Biologically active complex of the flower of the Kazakhstan safflower species 'Ak-Mai' was released for the first time by using this oil.


Assuntos
Carthamus tinctorius/química , Óleos Voláteis/química , Óleos de Plantas/química , Carthamus tinctorius/crescimento & desenvolvimento , Flores/química , Flores/crescimento & desenvolvimento , Cazaquistão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA